Fracture Traces and Egyptian Archaeology

Science Daily has an interesting article on a new (well really old, but rediscovered) technique that may help uncover more Egyptian tombs. The technique is based on mapping fracture traces:

Fracture traces are the above-ground indication of underlying zones of rock fracture concentrations. In 1964, Laurence H. Lattman and R. Parizek published a paper on fracture traces that indicated where increased weathering and permeability occurred and where people could drill wells more efficiently. These fracture traces can be between 5 and 40 feet wide, but average about 20 feet, and can be as long as a mile.

In the time since the Lattman annd Parizek paper the techniques has been used to find water, monitor pollution and find good areas for tunneling. Recent research, by Parizek’s daughter, in Egypt indicates that:

More extensive surface and subsurface mapping confirmed the idea that the builders knew what they were doing. The tomb builders placed the entrances to their tombs in valley bottoms or receding depressions on the cliffs where the crumbling stone would hide the tombs. These tombs, built between 1500 and 1000 B.C., usually have a long entry hall leading to a burial chamber. They may have additional rooms for equipment and provisions and other storage areas. Tomb walls are often plastered and painted. The tombs are usually built sloping downward or actually have vertical shafts. To date, 63 tombs are identified in the Valley of the Kings with tomb 63 located in February 2006.
“Katarin predicted that the location of still to be discovered tombs might be determined using the fracture-trace method,” R. Parizek said. “The discovery of KV-63 showed the correlation between tombs and fracture traces.”

In addition to helping find tombs, the techique has applications to preservation:

While it does not often rain in the desert, when it does, water pours off hills and runs over the land and into the wadis — valleys. Paving of parking lots, roads and paths to allow tomb visitors increases the flooding. Even though the Egyptians build barriers at the tomb entrances, water often flows into the tunnels causing irreversible damage to the tombs.
The open entrances, however, are not the only way water enters the tombs. Water finds the fracture concentrations beneath the fracture traces and seeps into the ground. If tombs are built along or below the traces, eventually water insinuates itself through the fractured rock and enters the tombs. Water can ruin even undiscovered, unopened tombs in this way.
“If we can map the fracture traces and their associated fracture zones above and below ground, then we can see how to divert water so that it not only misses the tomb entrances, but also bypasses the permeable areas of the traces,” says R. Parizek.
Water entering tombs through the fractured rock also causes major damage to roofs and pillars in the tombs. The researchers note that even without water, the pillars and roofs are more unstable on fracture zones. With water, the limestone rock weakens and breaks off. Because of these rock stability problems, tombs are closed for fear of injury to visitors.

Three questions immediately spring to mind. First, can this techique be applied to other, arid, areas outside Egypt? Second, is the technique restricted to arid environments or can it be applied in, say, the Yucatan? Third, what is the resolution? In other words, can it be used to detect things smaller than an Egyptian tomb? Future research will tell…

%d bloggers like this: